L

WN‘

NASA CONTRACTOR
REPORT

NASA CR-1455

LOAN COPY: RETURN T0
AFWL (WLOL)
KIRTLAND AFB, N MEX

ON-LINE PARSING OF HAND-PRINTED
MATHEMATICAL EXPRESSIONS:
FINAL REPORT FOR PHASE II

by Thomas G. Williams

Pr‘epared by
SYSTEM DEVELOPMENT CORPORATION

Santa Monica, Calif.

for Electronics Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION « WASHINGTON, D. C. DECEMBER 1969

TECH LIBRARY KAFB, NM

LT

00606L3)
T NADA CR-1455

~. Ml
\

ON-LINE PARSING OF HAND-PRINTED
MATHEMATICAL EXPRESSIONS:

FINAL REPORT FOR PHASE II

By Thomas G. Williams

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

Issued by Originator as Report No. TM-4158/000/00

Prepared under Contract Nos. NAS 12-526 and DAHC15-67-C-0149 by
SYSTEM DEVELOPMENT CORPORATION
Santa Monica, Calif.
for Electronics Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Informotion

Springfield, Virginia 22151 — Price $3.00

T AR S

N W el R R R W 1 T i 111 M o i B D 1 | 51 111 V0 A

~

Section

2,

3.

3.1
3.2

10.

TABLE OF CONTENTS

INTRODUCTION & o o o o o o 5 ¢ s s o o o o o o & »
PROGRAM STRATEGY L] 1) . . [) [) L] L] L] [) [] [] . L] » L] .
DATA DESCRIPTIONS o+ o s ¢ 6 o ¢ o s s s o a s o »

String List S 6 6 6 8 & 8 s & 8 8 & & 8 s 8 o
Fract Li st L) L] L] L] [] . . . L] L] L] . L] L] . L]

Sortlist List e 6 8 & 6 8 6 o e 8 s 8 s 8 v s s
PARSER DESCRIPTION . L] L] L . L] . s & o . o o .
EDITING OPERATIONS « 4 o o o s s o« o ¢ 2 o o s & o

Overwrite Opera.tions s 8 8 8 8 e & * s s & 8 e o+

Move Operations 4+ s o o ¢ ¢ ¢ o ¢ s @
Horizontal Open=uUp « s« « » s o o s s & » o o o
Horizontal Close-=up . .

Move ExXpPression « o o o o & s s ¢ o a

Move GroupP « o s o s o

CONCLUSION . L]) L] . [] . L] . . . L] L] L] L) . . * . .

On-Line Parsing System in Operation .+ + « o & & o
STRING List Structure for a Subexpression (X) . .
Derivation of Positional Relationship Information
Sample Input Structures and Character Subsets .,

Scrub Operations [S Y N S S W S S S ST SR S ST S S 3
Overwrite Operation L T T S Y Y S S S S R T Y)
Horizontal Open=up Operations <« ¢« s ¢ ¢« o ¢ ¢ o o
Horizontal Close~up Operations « « « « o o s s o« o
Move Expression Operation . « ¢« v ¢ « ¢« ¢ o ¢ o
Move Group Operations .+ o« « o ¢ o o s o s o ¢ o

. & * ¢

10

11
11
13
i3
14

1. INTRODUCTION

This document describes a program which analyzes free~hand two=dimensional
mathematical expressions. Such expressions can be generated with the hand-
printed character recognition program®* currently in operation at SDC. The
user interacts with the character recognizer to enter characters of any size
placed anywhere on the input surface. His hand-printed characters, as recog-
nized, are replaced in a standard form at the same place, same size, same
aspect ratio by the character recognizer. The output of the analyzer is also
displayed at the top of the writing surface so that the user knows the current
interpretation of his input. Figure 1 shows the system in operation.

The analysis or parsing program is a two-phase system, The first phase
converts the two-dimensional structure into & linear string. This phase
operates concurrently with input and editing, so that the user can alwsys

be given the current interpretation of his input. The string also provides
editing information. The second phase operates on the linear string in the
same manner as & conventional compiler or interpreter, It is dependent upon
the ultimate objective of the input, and thus will not be discussed here,

There are three advantages to this two-phase system. First, the first phase

can operate correctly on incomplete expressions. The user 'feedback mentioned
above can only be given if incomplete expressions can be analyzed. Second, as
mentioned above, the information developed can be used in editing, whether or

not the expression is complete. This allows, for example, a group of characters—-
such as an integral sign with its associated limits of integration--to participate
in editing operations without explicit designation by the user., Third, the
context-dependencies of mathematical notation can be handled by the second phase,
where syntax- or table-driven systems make this easy.

2. PROGRAM STRATEGY

The first phase of the parser analyzes "local syntax,”" that is, relationships
between nearby characters. The assumption is made that these relationships

can be analyzed by comparing successive pairs of characters. Thus, for example,
rules are formulated as to what constitutes a subscript or superscript, and
positions of characters are tested against these rules. The use of such local
syntax allows incomplete expressions to be processed,

The current program reprocesses all input characters in the expression after
each new set of characters is received from the character recognizer. The
characters are kept in a list that is sorted in left-to-right order. This

list is used to generate the linear string. In earlier versions, attempts were
made to edit the new characters into the existing linear string without
rescanning all characters., Thus, the routines used were (and for the most

part still are) relatively insensitive to variations in character order. This
provides protection in cases where editing operations alter the position of

*The character recognizer is described in TM=3937/000/00.

Figure 1. OneLimne Parsing System in Operation

characters. The current approach solves many of the problems that arose in
maeking the analysis completely insensitive to character order.

Under time-sharing, the user does not notice the extra time required to process
the entire string of charascters. In the present system, representative compu-
tation times for the necessary operations are:

10-15 msec per stroke to recognize a character

2 msec per character for the parser

2 msec per character to generate the output messages
Thus, adding & new character to a string which currently has L0 characters would

require less than 200 msec. This is insignificant compared to the wait in the
time~sharing queue, which is on the order of seconds,

The rest of this document describes in detail the operation of the program.
It is divided into sections on the data structures, the program structure, and
the editing operations.

3. DATA DESCRIPTIONS

The basic data element in the program is called the CSP block.* A CSP block
is generated for each user-supplied character and contains both position and
syntax information. The following information is in the CSP (all information
is generated by the parser unless otherwise noted):

Character The character code; supplied by the character
recognizer,
XO,YO The coordinates of the lower left corner of

the minimum rectangle surrounding the character;
provided by the character recognizer,

DX,DY The length of the sides of the minimum rectangle;
provided by the character recognizer.

X ,Y The position of the center of the character,
This is a weighted center: In X, it is the
geometric center; in Y, it may differ from

the geometric center as specified in a property
string maintained for each character, This is

to mllow proper analysis of characters like "y"

and "g" which extend below the character line,

Display Buffer A pointer to the location of the character in
Location the display buffer; this is generated by the
character output routine.

*The name comes from an earlier program; the meaning of the letters has been
lost in antiquity.

SORTLIST Link

Function

Related Character

Related Fraction
Bar

Mainline Character
Forward

STRING Pointer

Expression Begin

Expression End

A pointer to the next CSP on the SORTLIST, which
is the list of CSP's sorted into left-to-right
order; generated by the sort routine.

The function assigned to the character; functions
are mainline (on the same line as another char-
acter), subscript, superscript, and unrelated,

The character to which this character is related
by the functionj the leftmost character in a string
or substring has no related character, nor does

an unrelated character.

If the character is in the numerator or denomi-
nator of a fraction, the CSP location of that
bar is stored here.

If another character follows this one on the
same line, its CSP location is stored here,

The pointer to the block in the STRING list which
contains this CSP.

The pointer to the block in the STRING list
which contains the beginning of the expression
for this character, The expression for an
ordinary character contains its subscripts and
superscriptsy for a fraction bar, its numerator
and dencminator.

The pointer to the block in the STRING list which
contains the end of the expression for this
character,

CSP's are contained on three lists, described in the following sections.
3.1 STRING LIST

The STRING list is the linear output produced by the parser. It is a two-way
list structure, which permits scanning the list in both directions. Two types

of cells are contained on this list: (1) external cells, which contain CSP
addresses and are used for characters input by the user, and (2) internal cells,
which do not contain CSP addresses and are used for characters which must be
inserted into the list internally to represent the meaning of the two-dimensional
structure. Figure 2 shows the structure for the sub-expression (X) where the

X has been supplied by the user and the () are added by the parser.

¥
L

STRING List for (X)

— 1 (
CSP for X \l/ /T\
< :] X .
U
0])
\ T
2 vords i

Figure 2, STRING List Structure for a Subexpression (X)

The notation used in the STRING is similar to--but not identical to--the notation
used in algebraic compilers such as FORTRAN, It is best given by example.

Two-dimensional
sub- and super-script notation: STRING equivalent:

af + b§3 al+it2) + b[+i+23]

Two~-dimensional STRING equivalent:
fractions:

.ﬁz._ﬂf_ (a[+2] + v[42])/(clt2])

CQ

3.2 FRACT LIST

The FRACT list is a list of the CSP's for all horizontal bars, It contains
CS8P's for both fraction bars and minus signs, because a bar is not known to be
a minus sign until all characters have been processed., The order on this list
is longest bar first.

3.3 SORTLIST LIST
The SORTLIST list contains all CSP's, sorted into left-to-right order,
., PARSER DESCRIPTION

The parser receives groups of characters from the user through the character
recognizer, The following operations are done on each character of a group
before entry into the parsing program proper:

1, A check is made to see if the new character overwrites an old
character, (See Section 5 on editing for a description of this
process.,)

2. A CSP block is constructed and set with the information available
from the character recognizer,

3. The character is pleced in the display buffer for output.

4, The CSP is sorted into the SORTLIST according to the value of XO.
The parser operates from the SORTLIST. At eny time, each character is processed
with reference to the characters that have already been processed and placed on
the STRING list. The character being processed is called the input character;
any previously processed character, a reference character,

The analysis of an input character is in two phases: the first phase finds a
substring of the characters on the STRING list that the input character can be
related to; the second phase checks for various relations that can exist between
the input character and a reference character from the substring.

The relationships that can be found between an input character and a reference
character are: subscript, superscript, mainline, or unrelated. Figure 3 shows
the positional information used to check such relationships.

Sugerscrigt Unrelated

Top Y Bound

Mainline

Slope = 1/4

-
~
 —d
=)
<

DY

Bottom Y Bound

6__.
=3 /\<— —>y\|<—
g
(25

Slope = =1/h

€— DX | DX
Unrelated

Subscript €X Bound

Reference character

Figure 3, Derivation of Positional Relationship Information

To be considered at all, the left edge of the input character must be to the
right of the left edge of the reference character. To be a superscript,

the input character must be shorter than the reference character, the center

of the input character must be above the top Y bound, and the left edge of the
input character must be to the left of the X bound. To be a subscript, the
input character must be shorter than the reference character, the center of the
input character must be below the bottom Y bound, and the left edge of the
input character must be to the left of the X bound. Any input character

whose center falls between the top and bottom Y bounds is a mainline character,
Any input character not meeting any of the above conditions is unrelated.

The processing performed during the first phase of the parser depends on whether
the symbol is a horizontal bar or not. If the input character is not & hori-
zontal bar, a search is made for any horizontal bar already in the string that
the input character might be above or below., An input character is related

to a horizontal bar if the center of the input character lies within the

X extent of the bar, This check is made with the FRACT 1list. If the input
character is related to a horizontal bar, the bar is changed from a minus to

a fraction bar if necessary. Then it is determined whether the input character
belongs in the numerator or denominator of the bar, by comparing the center of

the input character and the center of the bar., The characters already in the
appropriate part of the bar are used as the first substring of characters that
the input character can be related to, If this subset is not empty, any hori=
zontal bars in the substring are checked to see if the current character lies
within their extent. If so, the process is repeated to find a new subset,
Eventually, a character substring (possible empty) is found which contains

the characters associated with the same fraction bar as the input character.
If no fraction bars have been found, the subset is the entire string. The
related fraction bar entry in the CSP for the input character is assigned at
this point.

Figure LI shows some two-dimensional structures, input characters, and the sub-
sets of characters that are used. The box ([) indicates the input character.

Exgression Substr@ggﬁFound
a + b +[c] a+b+
a+-2- empty
a+b
d +b
e + [b]

a.'.b+E+E b+ =<

T

Figure 4, Sample Input Structures and Character Subsets

If the substring is empty, the input character is assigned as a mainline
character to the numerator or denominator of the fraction bar, as appropriate,
and the analysis is complete. Otherwise, the nearest of the characters to

the input character whose left edge is to the left of the left edge of the

input character is chosen as the first reference character. The two characters
are compared., If a relation is found, the function and related character
entries in the CSP are set accordingly, and the analysis is finished. 1If not,
the character before the current reference character in the substring is selected
as the next reference character. This process continues until either a relation
is found or the beginning of the substring is reached, If the beginning of the
substring is reached, the input character is unrelated and the CSP is so marked,

If the input character is a horizontal bar, a check is made to see if the bar
is a fraction bar, or is in a fraction, This is determined by the presence of

)

characters whose centers are either above or below the input bar and are
contained within the X entent of the bar. If no such characters are found,
the bar is assumed to be a minus sign, and it is treated as an ordinary char-
acter (as above). It is still placed on the FRACT list, as characters
encountered later may convert it into a fraction bar.

If the bar is determined to be & fraction bar, a process similar to that used
for ordinary characters is entered to find the proper substring of characters
in which the input bar should be placed. There are three possible results,

1. The substring is empty. The bar is then a minus sign after all, and
is treated as an ordinary character.

2. All of the characters in the substring are in the numerator or the
denominator of the new bar. 1In this case, the characters are copied
into the appropriate position in the expression for the input bar,
and the function and related character entries of the first character
in the subset become the function and related character entries in
the CSP of the input bar., The function and related character entries
of the first character of the subset are changed to reflect the new
situation.

3., The fraction bar may have some (but not all) of the characters in the
substring in its numerator or denominator. In this case, the char-
acters in the numerator or denominator are deleted from the substring
and placed into an expression containing the input bar. Then the
fraction bar is analyzed with the characters left over in the substring.

The placement of en input character into the output STRING list is done from
the entries set into the CSP by the analysis process. It is a simple matter
of locating the input character with respect to its related character and
adding any internal characters necessary to specify the relationship. If the
character is unrelated, it is sorted into the STRING list by its position in
the two-dimensional expression., This method often results in the correct
placement of a character even though it could not be analyzed,

Se EDITING OPERATIONS

There are two classes of editing operations: overwrite and move. The overwrite
class consists of the two operations scrub and character overwrite, These are
done in the character input mode--the normal mode of operation. The move class
consists of horizontal open-up, horizontal close=-up, move expression, and move
group operations, These operations must be done in the special move mode, which
is entered from a light button.

5.1 OVERWRITE OPERATIONS

Overvwrite and scrub are used to delete and change characters. Scrub is an input
that is analyzed by the character recognizer as having too many features. When
this is detected, all characters whose centers are within the rectangle sur-
rounding the scrub character are deleted. The expressions associated with

these characters are also deleted: This means that if a character is deleted,
its sub- and super-scripts are deleted also; if a fraction bar is deleted, the
numerator and denominator are deleted also, as shown in Figure 5,

EXPRESSION SCRUB RESULT

FIGURE 5. SCRUB OPERATIONS

An overwrite is simply a new character written over an old character. For each
new character input, all old characters whose centers lie within the rectangle

surrounding the new character are deleted, The expressions of these characters
are not deleted. This allows characters to be replaced as shown in Figure 6,

EXPRESSION OVERWRITE RESULT

FIGURE 6. OVERWRITE OPERATION
5.2 MOVE OPERATIONS
The move operations are used to move characters around in the user's two-

dimensional expression. They are indicated by special characters which are
recognized in the move mode. These characters are:

Operation Character
Horizontal Open-up Any single stroke beginning in the rectangle

of an existing character.

Horizontal Close-up Two strokes; the beginning and ending points
of each stroke must determine a horizontal line.

Move Expression A period within an existing character followed
by any second stroke,

Move Group A horizontal line followed by a second stroke,
The line between the beginning of the first
stroke and the beginning of the second stroke
must be horizontal,

When arbitrary strokes are allowed, only the beginning and ending points are
involved and these are used to determine the increments in X and Y that are
used to move the characters.

These four move operations are described in more detail in the following sections.

5.2.1 Horizontal Open-~up

The purpose of the horizontal open-up operation is to create a space in the
two-dimensional structure, An X increment is calculated from the difference
between the end points (from beginning to end) of the stroke used to signify
this operation.

11

The character whose rectangle contains the beginning of the stroke is then found,
If the X increment is positive (move right), the specified character and all
characters to its right are moved by the X increment., If the X increment is
negative, the specified character and all characters toc its left are moved left
by the X increment. Any character moved off the screen is deleted and cannot

be recovered. If the specified character is in a fraction, only characters

in the fraction are moved. The Figure T illustrates this function.

EXPRESSION OPEN-UP RESULT

LEFT
STROKE

RIGHT
STROKE

LEFT
STROKE

RIGHT
STROKE

FIGURE 7. HORIZONTAL OPEN-UP OPERATIONS

12

5.2,2 Horizontal Close=up

This operation is the inverse of open-up. All characters to the right of the
elose-up symbol are moved left by an amount determined by the average length
of the strokes. The same limits on fractions and screen limits apply in close=up.

Figure 8 shows some examples.

EXPRESSION CLOSE-UP RESULT

FIGURE 8. HORIZONTAL CLOSE-UP OPERATIONS

5.2.3 Move Expression

This operation allows an expression to be moved arbitrarily in X and Y. The
character is specified by the dot, the amount to be moved by the beginning and

end of the second stroke. The specified character and its expression are moved;
nothing else is changed., As before, any character moved off the screen is deleted.

Figure 9 shows an example of this,

13

EXPRESSION MOVE RESULT

FIGURE 9. MOVE EXPRESSTON OPERATION

S5.2.h Move Group

This operation allows a group of characters to be moved. The horizontal line
delimits the characters to be moved; the second stroke determines the increments
for the move. If the group is to be moved up (Y increment is positive) then all
characters above the horizontal line are moved up; if down, all characters below
the line are moved down. Motion in the X direction is also done as specified
by the second stroke. No other characters are changed. Any characters moved
off the screen are deleted, See Figure 10,

EXPRESSION MOVE RESULT

FIGURE 10. MOVE GROUP OPERATIONS

14

I

6. CONCLUSION
The notation accepted by this version of the parser is only a subset of the notation

« = d =a
used in mathematics, In particular, expressions such as X, X, >< and (:)
cannot be analyzed. ¢ b

However, the range of notation accepted is sufficiently broad so that useful
work can be done without resorting to linear equivalents as input., Future work
will include removal of these limitations.

This program demonstrates the usefulness of allowing ordinary hand-printed
mathematical notation to be used as & computer language. The most important
conclusion to be drawn at this time is that the techniques for utilizing
common two-dimensional notations should be extended to encompass all commonly
used notations in all fields of science and engineering.

15 NASA-Langley, 1969 —— 8 CR-1455

